

Product Data Sheet:

Human WISP1 ELISA

Catalogue number:

RIG025R

For research use only!

BioVendor - Laboratorní medicína a.s.

Karásek 1767/1, 621 00 Brno, Czech Republic

+420 549 124 185

info@biovendor.com

sales@biovendor.com

www.biovendor.com

1.	INTENDED USE	3
2.	REAGENTS PROVIDED	3
3.	STORAGE INSTRUCTIONS – ELISA KIT	3
4.	MATERIALS REQUIRED BUT NOT PROVIDED	3
5.	PROCEDURE GUIDELINES	3
6.	PREPARATION	4
7.	PERFORM ELISA (TOTAL ASSAY TIME 4 HOURS AND 45 MINUTES)	6
8.	TYPICAL DATA	7
9.	PERFORMANCE CHARACTERISTICS	8

1. INTENDED USE

The Human WISP-1 ELISA Kit is a solid-phase sandwich Enzyme-Linked Immunosorbent Assay (ELISA) designed to detect and quantify the level of human WISP-1 in serum, plasma, and cell culture media.

2. REAGENTS PROVIDED

- 1 Anti-Human WISP-1 Precoated 96-well Strip Plate
- 2 vials **Biotin Conjugate**
- 1 vial (0.2 ml) **Streptavidin-HRP Reagent** (300x)
- 2 vials Recombinant Human WISP-1 Standard, lyophilized
- 1 vial (15 ml) **Assay Diluent B Concentrate** 5x
- 1 vial (30 ml) Assay Diluent C
- 1 bottle (25 ml) Wash Buffer Concentrate 20x
- 1 vial (12 ml) **TMB Substrate**
- 1 vial (8 ml) Stop Solution
- 2 Adhesive Films

3. STORAGE INSTRUCTIONS - ELISA KIT

May be stored for up to 6 months at 2° to 8°C from the date of shipment.

Note: the kit can be used within one year if the whole kit is stored at -20°C. Avoid repeated freezethaw cycles.

4. MATERIALS REQUIRED BUT NOT PROVIDED

- Distilled or deionized water
- Microtiter plater reader with software capable of measuring at 450 nm
- Plate washer-automated or manual (manifold dispenser)
- Calibrated adjustable precision pipettes and glass or plastic tubes for diluting solutions

5. PROCEDURE GUIDELINES

Reagents are lot-specific. Do not mix or interchange different reagent lots from various kit lots.

6. PREPARATION

6.1. Prepare 1x Wash Buffer

- 1. Allow Wash Buffer Concentrate (20X) to reach room temperature and mix to redissolve any precipitated salts.
- 2. Dilute 20 mL of the Wash Buffer Concentrate into 380 ml of deionized or distilled water. Label as 1X Wash Buffer.
- 3. Store the concentrate and 1X Wash Buffer in the refrigerator. Use the diluted buffer within one month.

6.2. Prepare Diluent

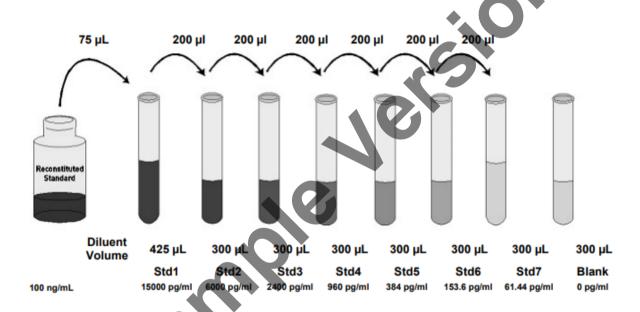
Assay Diluent B should be diluted 5-fold with deionized or distilled water before use.

6.3. Prepare Biotin Conjugate

- 1. Briefly spin down the biotin conjugate before use.
- 2. Add 100 µl of 1X Assay Diluent B into the vial to prepare a biotin conjugate concentrate.
- 3. Pipette up and down to mix gently (the concentrate can be stored at 4°C for 5 days).
- 4. The biotin conjugate concentrate should be diluted 80-fold with 1X Assay Diluent B and used in step 2 of ELISA procedure.

6.4. Sample Preparation guidelines

- Collect samples in pyrogen/endotoxin-free tubes.
- Freeze samples after collection if samples will not be tested immediately. Avoid multiple freeze-thaw cycles of frozen samples.
- Thaw completely and mix well (do not vortex) prior to analysis.
- Avoid the use of hemolyzed or lipemic sera. If large amounts of particulate matter are present in the sample, centrifuge or filter sample prior to analysis.
- Collect plasma using EDTA as an anticoagulant. Heparin and citrate are not recommended.


6.5. Pre-dilute samples

- Assay Diluent C should be used for dilution of serum and plasma samples. 1X Assay Diluent B should be used for dilution of cell culture supernatant samples.
- Dilute serum and plasma 2 fold.
- Because conditions may vary, it is recommended that each investigator determine the optimal dilution to be used for each application.

6.6. Dilute Standards

Note: Use glass or plastic tubes for diluting standards.

- 1. Briefly spin down a vial of lyophilized standard.
- 2. Add 400 μL Assay Diluent C (for serum/plasma samples) or 1X Assay Diluent B (for cell culture supernatants) into the lyophilized standard vial to prepare a 100 ng/mL standard. Dissolve the powder thoroughly by gentle mixing. Add 75μL WISP-1 standard (100 ng/mL) from the vial of reconstituted standard, into a tube with 425μL Assay Diluent (C or B) to prepare a 15,000 pg/mL standard solution. Pipette 300 μL Assay Diluent (C or B) into each tube. Use the 15,000 pg/mL standard solution to produce a dilution series (shown below). Mix each tube thoroughly before the next transfer. Assay Diluent (C or B) serves as the zero standard (0 pg/mL). The 15,000 pg/mL standard point may be saturated in Assay Diluent B, we recommend starting from 6,000 pg/mL.

6.7. Prepare 1x Streptavidin-HRP solution

Note: Prepapre the Streptavidin-HRP within 15 minutes of usage.

- 1. Briefly spin the Streptavidin-HRP and pipette up and down to mix gently before use, as precipitates may form during storage.
- 2. Dilute Streptavidin-HRP 300-fold with 1X Assay Diluent B.
- 3. Do not store diluted solution for future use.

7. PERFORM ELISA (TOTAL ASSAY TIME 4 HOURS AND 45 MINUTES)

Allow all reagents to reach room temperature before use. Mix all liquid reagents prior to use.

IMPORTANT! Perform a standard curve with each assay.

Determine the number of 8-well strips required for the assay. Insert the strips in the frames for use. Re-bag any unused strips and frames, and store at 2 to 8°C for future use.

Bind antigen

- a. For the standard curve, add 100 μ L of standards to the appropriate wells (see Dilute standards). For samples, add 100 μ L of diluted samples (see Dilute samples) to the wells.
- b. Cover wells and incubate for 2.5 hours at room temperature or over night at 4 °C with gentle shaking.
- c. Discard the solution and wash 4 times with 1X Wash Buffer. Wash by filling each well with Wash Buffer (300 μ L) using a multi-channel Pipette or autowasher. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
 - 2 Add biotin conjugate

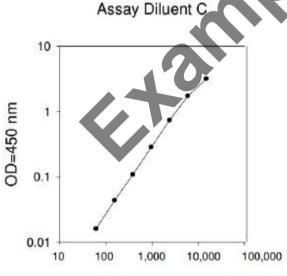
- a. Add 100 µL of prepared biotin conjugate (see Prepare biotin conjugate) to each well.
- b. Incubate for 1 hour at room temperature with gentle shaking.
- c. Discard the solution. Repeat the wash as in step 3.
- 3 Add Streptavidin-HRP

- a. Add 100 μL of prepared Streptavidin-HRP solution (see Prepare Streptavidin-HRP solution) to each well.
- b. Incubate for 45 minutes at room temperature with gentle shaking.
- c. Discard the solution. Repeat the wash as in step 3.
- 4 Add TMB substrate

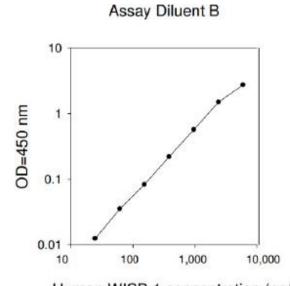
- a. Add 100 μL of TMB Substrate to each well. The substrate will begin to turn blue.
- b. Incubate for 30 minutes at room temperature in the dark with gentle shaking.

5 Add stop solution

Add 50 μ L of Stop Solution to each well. Tap the side of the plate gently to mix. The solution in the well changes from blue to yellow.


Read the plate and generate the standard curve

- 1. Read the absorbance at 450 nm. Read the plate within 30 minutes after adding the Stop Solution.
- 2. Use curve-fitting software to generate the standard curve. A four parameter algorithm provides the best standard curve fit. Optimally, the background absorbance may be subtracted from all data points, including standards, unknowns and controls, prior to plotting.
- 3. Read the concentrations for unknown samples and control from the standard curve. Multiple value(s) obtained for sample(s) by the appropriate factor to correct for the sample dilution.


<u>Note</u>: Dilute samples producing signals greater than that of the higest standard in Standard Diluent Buffer and reanalyze. Multiply the concentration by the appropriate dilution factor.

8. TYPICAL DATA

These standard curves are for demonstration only. A standard curve must be run with each assay.

10 100 1,000 10,000 100,000 Human WISP-1 concentration (pg/ml)

9. PERFORMANCE CHARACTERISTICS

Sensitivity

The minimum detecable dose of human WISP-1 is 50 pg/mL. This was determined by assaying replicates of zero and the standard curve. The mean signal of zero + 2 standard deviations read in dose from the standard curve is the LLD. This value is the smallest dose that is not zero with 95% confidence.

Recovery

Sample Type	Average % Recovery	Range (%)	
Serum	90	80-97	
Plasma	127	119-135	
Cell Culture Media	93	87-101	

Dilution Linearity

The serum, plasma, and cell culture media samples were spiked with recombinant Human WISP-1, serially diluted in sample diluent and evaluated. Observed values were compared to expected values to calculate percent recovery and demonstrate the dilution linearity of the assay.

Sample Type	Average % Expected		Range	
	1:2 Dilution	1:4 Dilution	1:2 Dilution	1:4 Dilution
Serum	86	76	80-97	67-83
Plasma	109	92	100-115	84-100
Cell Culture Media	110	118	102-116	109-125

Specificity

In this sandwich ELISA format, no cross-reactivity was observed with rhBiglycan, rhDecorin, rhNOV, or rhWISP-3.

Intra-Assay precision

To determine intra-assay precision, two standard curves and 3 samples for each standard curve are run. The standard curve concentration points as well as the samples are tested in duplicates on a single plate. Two different concentration values are obtained for each sample, using the two separate standard curves. The two concentration values for each sample is compared to each other using the CV% calculation.

Intra-Assay CV%: <10%

Inter-Assay precision

To evaluate inter-assay precision, the second standard curve is tested on a separate plate along with the second set of samples.

Inter-Assay CV%: <12%

+420 549 124 185 info@biovendor.com sales@biovendor.com www.biovendor.com