Stanniocalcin 1 Human HEK293

Cat. No.: RD172095100
Type: Recombinant protein
Size: 0.1 mg
Source: HEK293
Species: Human

Description
Total 240 AA. Mw: 25.9 kDa (calculated). C-Terminal Flag-tag, 10 AA (highlighted). The AA sequence is identical to Swiss-Prot- P52823.

Introduction to the molecule
Stanniocalcin 1 (STC1) is the mammalian homologue of STC, which was originally identified as a calcium/phosphate-regulating hormone in bony fishes. In contrast, STC1 may play an autocrine and paracrine role with pleiotropic effects in mammals. It is expressed in a wide variety of tissues, but unexpectedly is not expressed in the circulation under normal circumstances, which is possibly caused by its attaching to soluble and tethered forms of a high-affinity binding protein. STC-1 can affect calcium homeostasis, bone and muscle mass and structure, and angiogenesis through effects on osteoblasts, osteoclasts, myoblasts/myocytes, and endothelial cells in mouse model. Differential regulation of myocardial STC1 protein expression was reported in heart failure. In addition, STC1 may regulate calcium currents in cardiomyocytes and may contribute to the alterations in calcium homeostasis of the failing heart. STC1 was found to be a selective modulator of hepatocyte growth factor (HGF)-induced endothelial migration and morphogenesis, an inhibitor of macrophage chemotaxis and chemokinesis, suppressor of progesterone and luteinization inhibitor. Together with STC-2, it may play important roles in the processes of implantation and decidualization in the rat. In terminally differentiated adipocytes, it may function as a "survival factor", which contributes to the maintenance of the integrity of mature adipose tissue. In context with its possible role in gestation, a Big STC, a three higher-molecular-mass variant has been described. STC1 was identified as one of hypoxia-responsive genes coupled to hypoxia-driven angiogenesis. Current research indicates that STC-1 might be a useful molecular marker to detect tumor cells in blood and bone marrow from patients with various types of malignancies.

Research topic
Animal studies, Bone and cartilage metabolism, Oncology, Reproduction

Amino Acid sequence
THEAEQNDSV SPRKSRVAQQ NSAEVVRLCN SALTQVGCAG ACLKENSTCDT DGMYDICKSF LYSAAKFDTQ GKAUNESLKL CIGNVSTKV FLAIRRCSTF QRMIAEVOQQE CYSSKLNCSTL AKRNPEAITE VVQLPNHFSN RYYNRLVSRSL LECDEDTVST IRDSMEKISG PNMASLFHIL QTDHCATQTHP RADFNRRTTN EQQKLVLLR NLRGEEDSPS HIKRTSHESA ASDYKDĐĐĐK.

Purity
>95%

Endotoxin
< 0.1 EU/μg

Formulation:
Filtered (0.4 μm) and lyophilized in 0.5 mg/mL in 20mM Tris buffer, 50 mM NaCl, pH 7.5
Reconstitution:
Add deionized water to prepare a working stock solution of approximately 0.5 mg/mL and let the lyophilized pellet dissolve completely. Filter sterilize your culture media/working solutions containing this non-sterile product before using in cell culture.

Shipping
At ambient temperature. Upon receipt, store the product at the temperature recommended below.

Storage, Stability/Shelf Life
Store the lyophilized protein at –80 °C. Lyophilized protein remains stable until the expiry date when stored at –80 °C. Aliquot reconstituted protein to avoid repeated freezing/thawing cycles and store at –80 °C for long term storage. Reconstituted protein can be stored at 4 °C for a week.

Quality control
BCA to determine quantity of the protein.
SDS PAGE to determine purity of the protein.
LAL to determine quantity of endotoxin.

Applications
Cell culture and/or animal studies, ELISA, Western blotting

Note
This product is intended for research use only.

---

12% SDS-PAGE separation of Human Stanniocalcin-1
1. M.W. marker – 14, 21, 31, 45, 66, 97 kDa
2. reduced and heated sample, 5μg/lane
3. non-reduced and non-heated sample, 5μg/lane