

NOVEL IMMUNOASSAY TOOL FOR QUANTIFICATION OF STROKE RELATED miRNA BIOMARKERS

Tereza Batkova^{1,2,3}, Iveta Krepelkova^{2,5}, Barbora Dvorakova², Eva Bace², Robert Mikulik^{1,3,4}, Viktor Ruzicka² ¹Stroke Program. International clinical research center (FNUSA-ICRC), Brno; ²BioVendor-laboratrní medicine, Masaryk University, Brno; ³Faculty of medicine, Masaryk University, Brno; ⁴Department of Neurology, St Anne's University Hospital, Brno; ⁵Department of Oncology, Faculty of medicine, Masaryk University, Brno; ⁴Department of Neurology, St Anne's University Hospital, Brno; ⁵Department of Oncology, Faculty of medicine, Masaryk University, Brno; ⁴Department of Neurology, St Anne's University, Brno; ⁴Department of Neurology, St Anne's University, Brno; ⁴Department of Neurology, St Anne's University, Brno; ⁴Department of Neurology, Faculty of medicine, Masaryk University, Brno; ⁴Department of Neurology, St Anne's University, Brno; ⁴Department, Brno; ⁴Department of Neurology,

INTRODUCTION

- miRNAs are promising stroke biomarkers, but methods for their detection have limitations especially reverse transcription step in the most widely used RT-qPCR principle [1].
- We present novel method for quantitative miRNA measurement based on immunoassay miREIA.
- Analytical characteristics and correlation with RT-qPCR (ID3EAL miRNA qPCR Assays; MIRXES Life Science) were evaluated on 3 stroke related miRNAs hsa-miR-223-3p, hsa-miR-486-5p and hsa-miR-let-7b-5p [2-4].

METHODS

miREIA - an enzyme immunoassay for miRNA quantification involves

- hybridization of miRNA isolated from a patient sample to complementary biotinylated DNA probe (Fig. 1a).
- the DNA/RNA hybrids are transferred into microplate wells pre-coated with monoclonal antibody specific to perfectly matched DNA/miRNA hybrids (Fig. 1b).

Fig. 1: miREIA workflow (a – hybridization; b – immunoreaction and detection)

- after washing, the solid phase is incubated with streptavidin-HRP conjugate followed by another washing step. The resulting complexes are visualized by chromogenic substrate (Fig. 1b).
- the absorbance is proportional to the concentration of target miRNA [5].

RESULTS

2.5

90

ntration

CV = 16.47 %

miREIA analytical performance determined on the assay hsa-miR-223-3p was following:

- calibration range 12,5 0,39 amol/ul (Fig.2)
- limit of detection 0,13 amol/ul
- intra-assay (n=8) CV= 8,0 %
- spiking recovery 98,1 %
- dilution linearity 101,6 %
- repeatability CV = 12 % on average (Fig. 3)

b)

Fig. 2: Typical miREIA standard curve – similar to ELISA principle the absorbance is proportional to the absolute concentration of target miRNA

Fig.3: Repeatability – mesaured in 20 consecutive experiments on 4 different concentrations showed low variation what supports miREIA as a good validation tool and potentially applicable method in clinical practice.

CORRELATION

RNA from 38 samples (brain tissue, PBMC, whole blood and plasma) was isolated and analyzed by novel miREIA method and RT-qPCR. We found high correlation between both methods (Graphs 1-3).

miREIA (amol/ μ l)

Graph 1: correlation of hsa-miR-223-3p

miREIA (amol/ μ l)

Graph 2: correlation of hsa-miR-486-5p

CONCLUSION

- miREIA has favourable analytical characteristics.
- Great correlation with RT-qPCR technique measurning 3 stroke related miRNAs.
- Method is well compatible with classic clinical workflow and could help with validation of stroke biomarkers.

miREIA (amol/µl)

Graph 3: correlation of hsa-miR-let-7b-5p

REFERENCES

[1] STÅHLBERG, Anders, et al. Properties of the reverse transcription reaction in mRNA quantification. Clinical chemistry, 2004, 50.3: 509-515. [2] CHEN, Yajing, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. *Frontiers in neurology*, 2017, 8: 57. [3] LONG, G., et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC neurology, 2013, 13.1: 178. [4] ZHANG, Yu, et al. Clinical predictor and circulating microRNA profile expression in patients with early onset post-stroke depression. Journal of affective disorders, 2016, 193: 51-58. [5] www.biovendor.com/mirna

Supported by the European Regional Development Fund - project "INBIO" (No. CZ.02.1.01/0.0/0.0/16_026/0008451).

EUROPEAN UNION European Structural and Investment Funds **Operational Programme Research**, Development and Education

