HUMAN THYROID STIMULATING HORMONE ELISA

Product Data Sheet
Cat. No.: RCD028R
For Research Use Only
CONTENTS

1. INTENDED USE 3
2. PRINCIPLE OF THE TEST 3
3. INTRODUCTION 3
4. PROCEDURAL CAUTIONS AND WARNINGS 4
5. LIMITATIONS 5
6. SAFETY CAUTIONS AND WARNINGS 5
7. SPECIMEN COLLECTION AND STORAGE 6
8. REAGENTS AND EQUIPMENT NEEDED BUT NOT PROVIDED 6
9. REAGENTS PROVIDED 6
10. ASSAY PROCEDURE 8
11. CALCULATIONS 9
12. TYPICAL TABULATED DATA 9
13. TYPICAL CALIBRATOR CURVE 9
14. PERFORMANCE CHARACTERISTICS 10
15. REFERENCE VALUES 12
16. REFERENCES 12

This kit is manufactured by:
BioVendor – Laboratorní medicína a.s.

Use only the current version of Product Data Sheet enclosed with the kit!
1. INTENDED USE

For the direct quantitative determination of Thyroid Stimulating Hormone (TSH) by enzyme immunoassay in human serum.
For research use only.

2. PRINCIPLE OF THE TEST

The principle of the following enzyme immunoassay test follows a typical one-step capture or 'sandwich' type assay. The assay makes use of two highly specific monoclonal antibodies: A monoclonal antibody specific for TSH is immobilized onto the microwell plate and another monoclonal antibody specific for a different region of TSH is conjugated to horse radish peroxidase (HRP). TSH from the sample and standards are allowed to bind simultaneously to the plate and to the HRP conjugate. The washing and decanting steps remove any unbound HRP conjugate. After the washing step, the enzyme substrate is added. The enzymatic reaction is terminated by addition of the stopping solution. The absorbance is measured on a microtiter plate reader. The intensity of the colour formed by the enzymatic reaction is directly proportional to the concentration of TSH in the sample. A set of standards is used to plot a standard curve from which the amount of TSH in patient samples and controls can be directly read.

3. INTRODUCTION

Thyroid stimulating hormone (TSH) is a glycoprotein hormone secreted by the anterior pituitary gland. TSH has two subunits, namely α and β. The α subunit of TSH is similar to the α subunit found in the LH, FSH and hCG glycoprotein hormones. However, the β subunit is specific and differs from hormone to hormone. The thyroid hormones are secreted and produced by the thyroid gland. The production of thyroid hormones is under the regulation of TSH. Also, TSH acts as a stimulator of iodide transport and the gland itself is under the positive control of TSH. The concentrations of thyroid hormones control the secretion of TSH, therefore, a negative feedback exists. It is to be noted that the secretion of thyroid hormones are under the direct, positive effect of the sympathetic nervous system. The major protein component of the thyroid gland is thyroglobulin, a glycoprotein of which the secretion in the blood stream is stimulated by TSH. Therefore, TSH plays an important role in the proper function and development of the thyroid gland. It is recommended to assay both the glycoprotein hormone and the target organ hormones. For example, in primary hypothyroidism the serum level of thyroxine is low while the TSH level is high. In secondary hypothyroidism, both thyroxine and TSH are low. The TSH level is decreased in hyperthyroidism.
Today, with all the sensitive assays available, if there were to be only one test to be prescribed for thyroid function, TSH would be the test. TSH determinations are also helpful to monitor patients who receive thyroxine replacement therapy.

4. PROCEDURAL CAUTIONS AND WARNINGS

1. Users should have a thorough understanding of this protocol for the successful use of this kit. Reliable performance will only be attained by strict and careful adherence to the instructions provided.
2. Control materials or serum pools should be included in every run at a high and low level for assessing the reliability of results.
3. When the use of water is specified for dilution or reconstitution, use deionized or distilled water.
4. In order to reduce exposure to potentially harmful substances, gloves should be worn when handling kit reagents and human specimens.
5. All kit reagents and specimens should be brought to room temperature and mixed gently but thoroughly before use. Avoid repeated freezing and thawing of reagents and specimens.
6. A calibrator curve must be established for every run.
7. The kit controls should be included in every run and fall within established confidence limits.
8. Improper procedural techniques, imprecise pipetting, incomplete washing as well as improper reagent storage may be indicated when assay values for the controls do not reflect established ranges.
9. When reading the microplate, the presence of bubbles in the microwells will affect the optical densities (ODs). Carefully remove any bubbles before performing the reading step.
10. The substrate solution (TMB) is sensitive to light and should remain colourless if properly stored. Instability or contamination may be indicated by the development of a blue colour, in which case it should not be used.
11. When dispensing the substrate and stopping solution, do not use pipettes in which these liquids will come into contact with any metal parts.
12. To prevent contamination of reagents, use a new disposable pipette tip for dispensing each reagent, sample, standard and control.
13. Do not mix various lot numbers of kit components within a test and do not use any component beyond the expiration date printed on the label.
14. Kit reagents must be regarded as hazardous waste and disposed of according to national regulations.
5. LIMITATIONS

1. All the reagents within the kit are calibrated for the direct determination of TSH in human serum. The kit is not calibrated for the determination of TSH in other specimens of human or animal origin.
2. Do not use grossly hemolyzed, grossly lipemic, icteric or improperly stored serum.
3. Any samples or control sera containing azide or thimerosal are not compatible with this kit, as they may lead to false results.
4. Only calibrator A may be used to dilute any high serum samples. The use of any other reagent may lead to false results.
5. The results obtained with this kit should never be used as the sole basis for clinical diagnosis. For example, the occurrence of heterophilic antibodies in patients regularly exposed to animals or animal products has the potential of causing interferences in immunological tests. Consequently, the clinical diagnosis should include all aspects of a patient’s background including the frequency of exposure to animals/products if false results are suspected.
6. Some individuals may have antibodies to mouse protein that can possibly interfere in this assay. Therefore, the results from any patients who have received preparation of mouse antibodies for diagnosis or therapy should be interpreted with caution.

6. SAFETY CAUTIONS AND WARNINGS

6.1 Potential biohazardous material
Human serum that may be used in the preparation of the standards and control has been tested and found to be non-reactive for Hepatitis B surface antigen and has also been tested for the presence of antibodies to HCV and Human Immunodeficiency Virus (HIV) and found to be negative. However no test method can offer complete assurance that HIV, HCV and Hepatitis B virus or any infectious agents are absent. The reagents should be considered a potential biohazard and handled with the same precautions as applied to any blood specimen.

6.2 Chemical hazards
Avoid contact with reagents containing TMB, hydrogen peroxide and sulfuric acid. If contacted with any of these reagents, wash with plenty of water. TMB is a suspected carcinogen.
7. SPECIMEN COLLECTION AND STORAGE

Approximately 0.2 ml of serum is required per duplicate determination. Collect 4-5 ml of blood into an appropriately labelled tube and allow it to clot. Centrifuge and carefully remove the serum layer. Store at 4°C for up to 24 hours or at -10°C or lower if the analyses are to be done at a later date. Consider all human specimens as possible biohazardous materials and take appropriate precautions when handling.

7.1 Specimen pretreatment
This assay is a direct system; no specimen pretreatment is necessary.

8. REAGENTS AND EQUIPMENT NEEDED BUT NOT PROVIDED

1. Precision pipettes to dispense 20, 50, 150, 200 and 300 μl
2. Disposable pipette tips
3. Distilled or deionized water
4. Plate shaker
5. Microwell plate reader with a filter set at 450 nm and an upper OD limit of 3.0 or greater* (see assay procedure step 10).

9. REAGENTS PROVIDED

1. Mouse Anti-TSH Antibody Coated Microwell Plate-Break Apart Wells - Ready To Use.
 Contents: One 96 well (12x8) monoclonal antibody-coated microwell plate in a resealable pouch with desiccant.
 Storage: Refrigerate at 2-8°C
 Stability: 12 months or as indicated on label.

 Contents: Anti-TSH monoclonal antibody-HRP conjugate in a protein-based buffer with a non-mercury preservative.
 Volume: 300 μl/vial
 Storage: Refrigerate at 2-8°C
 Stability: 12 months or as indicated on label.
 Preparation: Dilute 1:50 in assay buffer before use (eg. 40 μl of HRP in 2 ml of assay buffer). If the whole plate is to be used dilute 240 μl of HRP in 12ml of assay buffer. Discard any that is left over.
3. TSH Calibrators - Ready To Use.
Contents: Six vials containing TSH in a protein-based buffer with a non-mercury preservative. Prepared by spiking buffer with a defined quantity of TSH. Calibrated against World Health Organization (WHO) 2nd IS 80/558.
*Listed below are approximate concentrations, please refer to vial labels for exact concentrations.

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>Concentration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator A</td>
<td>0 μIU/ml</td>
<td>2.0 ml</td>
</tr>
<tr>
<td>Calibrator B</td>
<td>0.2 μIU/ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Calibrator C</td>
<td>1 μIU/ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Calibrator D</td>
<td>5 μIU/ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Calibrator E</td>
<td>15 μIU/ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Calibrator F</td>
<td>30 μIU/ml</td>
<td>0.5 ml</td>
</tr>
</tbody>
</table>

Storage: Refrigerate at 2-8°C
Stability: 12 months in unopened vials or as indicated on label. Once opened, the standards should be used within 14 days or aliquoted and stored frozen. Avoid multiple freezing and thawing cycles.

4. Controls - Ready To Use.
Contents: Two vials containing TSH in a protein-based buffer with a non-mercury preservative. Prepared by spiking serum with defined quantities of TSH. Refer to vial labels for the acceptable range.
Volume: 0.5 ml/vial
Storage: Refrigerate at 2-8°C
Stability: 12 months in unopened vial or as indicated on label. Once opened, the controls should be used within 14 days or aliquoted and stored frozen. Avoid multiple freezing and thawing cycles.

5. Wash Buffer Concentrate - Requires Preparation.
Contents: One bottle containing buffer with a non-ionic detergent and a non-mercury preservative.
Volume: 50 ml/bottle
Storage: Refrigerate at 2-8°C
Stability: 12 months or as indicated on label.
Preparation: Dilute 1:10 in distilled or deionized water before use. If the whole plate is to be used dilute 50 ml of the wash buffer concentrate in 450 ml of water.

6. Assay Buffer - Ready To Use.
Contents: One vial containing a protein-based buffer with a non-mercury preservative.
Volume: 15 ml/vial
Storage: Refrigerate at 2-8°C
Stability: 12 months or as indicated on label.
7. **TMB Substrate** - Ready To Use.
Contents: One bottle containing tetramethylbenzidine and hydrogen peroxide in a non-DMF or DMSO containing buffer.
Volume: 16 ml/bottle
Storage: Refrigerate at 2-8°C
Stability: 12 months or as indicated on label.

8. **Stopping Solution** - Ready To Use.
Contents: One vial containing 1M sulfuric acid.
Volume: 6 ml/vial
Storage: Refrigerate at 2-8°C
Stability: 12 months or as indicated on label.

10. **ASSAY PROCEDURE**

All reagents must reach room temperature before use. Calibrators, controls and specimen samples should be assayed in duplicate. Once the procedure has been started, all steps should be completed without interruption.

1. Prepare working solutions of the anti-TSH-HRP conjugate and wash buffer.
2. Remove the required number of microwell strips. Reseal the bag and return any unused strips to the refrigerator.
3. Pipette 50 μl of each calibrator, control and specimen sample into correspondingly labelled wells in duplicate.
4. Pipette 100 μl of the conjugate working solution into each well (We recommend using a multichannel pipette).
5. Incubate on a plate shaker (approximately 200 rpm) for 60 minutes at room temperature.
6. Wash the wells 3 times with 300 μl of diluted wash buffer per well and tap the plate firmly against absorbent paper to ensure that it is dry (The use of a washer is recommended).
7. Pipette 150 μl of TMB substrate into each well at timed intervals.
8. Incubate on a plate shaker for 10-15 minutes at room temperature (or until calibrator F attains dark blue colour for desired OD).
9. Pipette 50 μl of stopping solution into each well at the same timed intervals as in step 7.
10. Read the plate on a microwell plate reader at 450 nm within 20 minutes after addition of the stopping solution. *If the OD exceeds the upper limit of detection or if a 450 nm filter is unavailable, a 405 or 415 nm filter may be substituted. The optical densities will be lower, however, this will not affect the results of patient/control samples. *If the OD exceeds the upper limit of detection or if a 450 nm filter is unavailable, a 405 or 415 nm filter may be substituted. The optical densities will be lower, however, this will not affect the results of patient/control samples.
11. CALCULATIONS

1. Calculate the mean optical density of each calibrator duplicate.
2. Calculate the mean optical density of each unknown duplicate.
3. Subtract the mean absorbance value of the “0” calibrator from the mean absorbance values of the calibrators, controls and serum samples.
4. Draw a calibrator curve on log-log paper with the mean optical densities on the Y-axis and the calibrator concentrations on the X-axis. If immunoassay software is being used, a 4-parameter or 5-parameter curve is recommended.
5. Read the values of the unknowns directly off the calibrator curve.
6. If a sample reads more than 30 μIU/ml then dilute it with calibrator A at a dilution of no more than 1:8. The result obtained should be multiplied by the dilution factor.

12. TYPICAL TABULATED DATA

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>OD 1</th>
<th>OD 2</th>
<th>Mean OD</th>
<th>Value (μIU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.071</td>
<td>0.073</td>
<td>0.072</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.100</td>
<td>0.099</td>
<td>0.100</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.177</td>
<td>0.171</td>
<td>0.174</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0.492</td>
<td>0.527</td>
<td>0.510</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>1.270</td>
<td>1.254</td>
<td>1.262</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>2.391</td>
<td>2.421</td>
<td>2.406</td>
<td>30</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.446</td>
<td>0.470</td>
<td>0.458</td>
<td>4.3</td>
</tr>
</tbody>
</table>

13. TYPICAL CALIBRATOR CURVE

Sample curve only. Do not use to calculate results.
14. PERFORMANCE CHARACTERISTICS

14.1 Sensitivity
The lower detection limit is calculated from the standard curve by determining the resulting concentration of the mean OD of Calibrator A (based on 10 replicate analyses) plus 2 SD. Therefore, the sensitivity of the BioVendor TSH ELISA kit is 0.1 μIU/ml.

14.2 Specificity (Cross-Reactivity)
The specificity of the TSH ELISA kit was determined by measuring the apparent TSH values of the following compounds:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration Range</th>
<th>Apparent TSH Value (μIU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCG</td>
<td>10,000-50,000 IU/L</td>
<td><0.15</td>
</tr>
<tr>
<td>Calibrated against WHO 1st IS 75/537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFSH</td>
<td>1000-4000 IU/L</td>
<td><0.15</td>
</tr>
<tr>
<td>Calibrated against WHO 1st 83/575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hLH</td>
<td>100-500 IU/L</td>
<td><0.15</td>
</tr>
<tr>
<td>Calibrated against WHO 2nd IS 80/552</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.3 Precision
Intra-Assay
Three samples were assayed ten times each on the same calibrator curve. The results (in μIU/ml) are tabulated below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
<th>SD</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.52</td>
<td>0.07</td>
<td>13.3</td>
</tr>
<tr>
<td>2</td>
<td>1.54</td>
<td>0.10</td>
<td>6.4</td>
</tr>
<tr>
<td>3</td>
<td>9.27</td>
<td>0.72</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Inter-Assay
Three samples were assayed ten times over a period of four weeks. The results (in μIU/ml) are tabulated below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
<th>SD</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
<td>0.07</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>8.03</td>
<td>0.99</td>
<td>12.3</td>
</tr>
<tr>
<td>3</td>
<td>25.42</td>
<td>3.26</td>
<td>12.8</td>
</tr>
</tbody>
</table>
14.4 Recovery
Spiked samples were prepared by adding defined amounts of TSH to three patient serum samples. The results (in μIU/ml) are tabulated below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Obs.Result</th>
<th>Exp.Result</th>
<th>Recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Unspiked</td>
<td>+0.25</td>
<td>2.31</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>+3.0</td>
<td>5.12</td>
<td>4.92</td>
</tr>
<tr>
<td></td>
<td>+7.5</td>
<td>10.26</td>
<td>9.42</td>
</tr>
<tr>
<td>2 Unspiked</td>
<td>+0.25</td>
<td>2.27</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>+3.0</td>
<td>5.10</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>+7.5</td>
<td>9.36</td>
<td>9.51</td>
</tr>
<tr>
<td>3 Unspiked</td>
<td>+0.25</td>
<td>2.35</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>+3.0</td>
<td>4.87</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>+7.5</td>
<td>8.57</td>
<td>9.52</td>
</tr>
</tbody>
</table>

14.5 Linearity
Three patient serum samples were diluted with calibrator A. The results (in μIU/ml) are tabulated below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Obs.Result</th>
<th>Exp.Result</th>
<th>Recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:2</td>
<td>4.53</td>
<td>4.68</td>
<td>96.8</td>
</tr>
<tr>
<td>1:4</td>
<td>2.31</td>
<td>2.34</td>
<td>98.7</td>
</tr>
<tr>
<td>1:8</td>
<td>1.08</td>
<td>1.17</td>
<td>92.3</td>
</tr>
<tr>
<td>2</td>
<td>10.89</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:2</td>
<td>5.65</td>
<td>5.45</td>
<td>103.7</td>
</tr>
<tr>
<td>1:4</td>
<td>2.96</td>
<td>2.72</td>
<td>108.8</td>
</tr>
<tr>
<td>1:8</td>
<td>1.32</td>
<td>1.36</td>
<td>97.1</td>
</tr>
<tr>
<td>3</td>
<td>11.85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:2</td>
<td>6.03</td>
<td>5.93</td>
<td>101.7</td>
</tr>
<tr>
<td>1:4</td>
<td>2.43</td>
<td>2.96</td>
<td>82.1</td>
</tr>
<tr>
<td>1:8</td>
<td>1.18</td>
<td>1.48</td>
<td>79.7</td>
</tr>
</tbody>
</table>

14.6 Comparative studies
The BioVendor TSH ELISA kit (Kit A) was compared with two other competitors ELISA kits (Kit B and Kit C). The results (in μIU/ml) are tabulated below:

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Kit A Mean</th>
<th>Kit B Mean</th>
<th>Kit C Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Males and Females</td>
<td>27</td>
<td>2.97</td>
<td>3.36</td>
<td>2.89</td>
</tr>
</tbody>
</table>
15. REFERENCE VALUES

As for all assays each laboratory should collect data and establish their own range of expected normal values. The following reference range (pg/ml) was established with 80 apparently healthy adults:

<table>
<thead>
<tr>
<th>Group</th>
<th>Range (μIU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.3-5</td>
</tr>
<tr>
<td>Hyperthyroid</td>
<td><0.15</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>>5.7</td>
</tr>
</tbody>
</table>

16. REFERENCES
