United States set
language
Menu Shopping cart $0 Search
Distributed product

Corticotropin Releasing Factor ELISA Mouse/Rat, Sensitive, Extraction-free

  • Regulatory status:RUO
  • Type:Sandwich ELISA, Biotin-labelled antibody
  • Other names:CRF
  • Species:Mouse, Rat
Cat. No. Size Price


YK131 96 wells (1 kit) $794,9
PubMed Product Details
Technical Data

Cat # changed from RSCYK131R to YK131

Type

Sandwich ELISA, Biotin-labelled antibody

Applications

Plasma-EDTA, Plasma-Heparin, Plasma-Citrate, Brain extract

Sample Requirements

50 µl/well

Shipping

At ambient temperature. Upon receipt, store the product at the temperature recommended below.

Storage/Expiration

Store the complete kit at 2–8°C. Under these conditions, the kit is stable until the expiration date (see label on the box).

Calibration Curve

Calibration Range

0.078–2.5 ng/ml

Intra-assay (Within-Run)

Mouse plasma 2.37-8.96 % Rat plasma 3.47-10.53 %

Inter-assay (Run-to-Run)

Mouse plasma 3.51-12.70 % Rat plasma 2.01-5.19 %

Summary

Research topic

Animal studies

Summary

Corticotropin releasing factor (CRF, also CRH) was initially isolated from ovine hypothalamus by Vale et al., in 1981, and identified as a novel neuropeptide comprising 41 amino acid residues with molecular weight 4758. Later human CRF and rat CRF were also isolated and identified. The mouse CRF peptide is identical at amino acid level to the rat and human CRF peptides. CRF in anterior pituitary promotes the synthesis and secretion of ACTH, a main factor of hypothalamus-pituitary-adrenal (HPA) axis. In the rat and human, CRF distributes mainly in hypothalamus, but it was also found in spinal cord, stomach, spleen, duodenum, adrenal and placenta. In addition, immunochemical evidence supported the wide distribution of the peptide throughout the central nervous system (CNS) such as olfactory bulb, retina and central auditory system in the rat. In mouse brain extracts, the highest concentrations of CRF-like immunoreactivity (CRF-LI) has been detected in the median eminence and hypothalamus and also existing in the amygdala, thalamus, frontal cortex, medulla/pons and cerebellum by radioimmunoassay. However because of the wide distribution, it is still disputing about CRF whether its blood level can reflect only the function of HPA axis. The relationships between CRF and stress, CRF and Alzheimer disease (AD) were attracted much attention recently. In fact the peptide was also suggested to regulate endocrine, autonomic and behavioral responses to stress, based on an experiment with acute and chronic stress rat models that showed endocrine function changes similar to those seen in patients with depression CRF in serial cerebrospinal fluid (CSF) of patients with depression was strikingly reduced as compared to those of normal subjects. The mean CRF and ACTH levels in the CSF of AD patients were significantly lower than those of healthy controls. Only in the cortices of those with mild dementia, CRF was
reduced significantly, thus CRF was proposed to serve as a potential neurochemical marker of early dementia and possible early AD.

A large proportion of the CRF in human brain was shown to be in the form of complex with its binding protein
(CRF-BP). CRF molecule in the complex is unavailable for activation of the CRF receptor. Accordingly reductions
in total CRF do not necessarily predict reductions of bioactive free CRF, and the levels of total CRF and CRF
Mouse/Rat CRF in the form of complex (CRF/CRF-BP) were suggested to be the main factors determining the quantity of bioactive free CRF in human brain. In AD there have been observed dramatic reductions in the content of free CRF in the brain and thus displacement of CRF from CRF-BP was proposed as a possible treatment for AD. In primary neuron culture, CRF exhibited protective effect against cell death induced by amyloid-beta peptide, suggesting that disturbances in HPA axis function can occur independently of alteration in CRF mRNA levels in AD brain and further suggesting an additional role for CRF in protecting neurons against cell death. On the other hand, Yanaihara et al., demonstrated immunoreative CRF in various neuroendocrine tumors, and suggested that the blood level of the peptide might be used as a tumor marker. All these information urge crucial importance of the measurement of CRF in the brain especially of experimental animals not only for analysis of the function of CRF in CNS, but also for research in the fields of stress response and AD. We have already developed mouse/rat/human CRF ELISA kit, and this time CRF-HS (high sensitivity) ELISA kit was developed in our laboratory, which is highly specific and sensitive quantification of mouse/rat CRF. The kit can be used for measurement of CRF directly in mouse/rat plasma and their brain tissue extracts with high sensitivity. (Special pretreatment of the brain tissue extract before assay is not necessary). It will be a specifically useful and convenient tool for CRF researches.

Product References (13)

References

  • Sand E, Linninge C, Lozinska L, Egecioglu E, Roth B, Molin G, Weström B, Ekblad E, Ohlsson B. Buserelin treatment to rats causes enteric neurodegeneration with moderate effects on CRF-immunoreactive neurons and Enterobacteriaceae in colon, and in acetylcholine-mediated permeability in ileum. BMC Res Notes. 2015 Dec 28;8:824. doi: 10.1186/s13104-015-1800-x. PubMed PMID: 26710832. PubMed CentralPMCID: PMC4693429. See more on PubMed
  • Delawary M, Tezuka T, Kiyama Y, Yokoyama K, Inoue T, Hattori S, Hashimoto R, Umemori H, Manabe T, Yamamoto T, Nakazawa T. NMDAR2B tyrosine phosphorylation regulates anxiety-like behavior and CRF expression in the amygdala. Mol Brain. 2010 Nov 30;3:37. doi: 10.1186/1756-6606-3-37. PubMed PMID: 21118530. PubMed CentralPMCID: PMC3003643. See more on PubMed
  • Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer's disease. Neurobiol Dis. 2001 Jun;8(3):492-503. doi: 10.1006/nbdi.2001.0395. PubMed PMID: 11442356. See more on PubMed
  • Geracioti TD Jr, Orth DN, Ekhator NN, Blumenkopf B, Loosen PT. Serial cerebrospinal fluid corticotropin-releasing hormone concentrations in healthy and depressed humans. J Clin Endocrinol Metab. 1992 Jun;74(6):1325-30. doi: 10.1210/jcem.74.6.1317385. PubMed PMID: 1317385. See more on PubMed
  • Davis KL, Mohs RC, Marin DB, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V. Neuropeptide abnormalities in patients with early Alzheimer disease. Arch Gen Psychiatry. 1999 Nov;56(11):981-7. doi: 10.1001/archpsyc.56.11.981. PubMed PMID: 10565496. See more on PubMed
  • Behan DP, Khongsaly O, Owens MJ, Chung HD, Nemeroff CB, De Souza EB. Corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRF-BP complex in Alzheimer's disease and control postmortem human brain. J Neurochem. 1997 May;68(5):2053-60. doi: 10.1046/j.1471-4159.1997.68052053.x. PubMed PMID: 9109532. See more on PubMed
  • Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, De Souza EB. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer's disease. Nature. 1995 Nov 16;378(6554):284-7. doi: 10.1038/378284a0. PubMed PMID: 7477348. See more on PubMed
  • Tsuchihashi T, Yamaguchi K, Abe K, Yanaihara N, Saito S. Production of immunoreactive corticotropin-releasing hormone in various neuroendocrine tumors. Jpn J Clin Oncol. 1992 Aug;22(4):232-7. PubMed PMID: 1359172. See more on PubMed
  • Seasholtz AF, Bourbonais FJ, Harnden CE, Camper SA. Nucleotide sequence and expression of the mouse corticotropin-releasing hormone gene. Mol Cell Neurosci. 1991 Jun;2(3):266-73. doi: 10.1016/1044-7431(91)90054-r. PubMed PMID: 19912808. See more on PubMed
  • May C, Rapoport SI, Tomai TP, Chrousos GP, Gold PW. Cerebrospinal fluid concentrations of corticotropin-releasing hormone (CRH) and corticotropin (ACTH) are reduced in patients with Alzheimer's disease. Neurology. 1987 Mar;37(3):535-8. doi: 10.1212/wnl.37.3.535. PubMed PMID: 3029628. See more on PubMed
  • Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, Anderson C, Nemeroff CB. Alterations in corticotropin-releasing factor-like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci. 1986 Oct;6(10):2908-14. doi: 10.1523/JNEUROSCI.06-10-02908.1986. PubMed PMID: 3020187. PubMed CentralPMCID: PMC6568795. See more on PubMed
  • Shibahara S, Morimoto Y, Furutani Y, Notake M, Takahashi H, Shimizu S, Horikawa S, Numa S. Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J. 1983;2(5):775-9. doi: 10.1002/j.1460-2075.1983.tb01499.x. PubMed PMID: 6605851. PubMed CentralPMCID: PMC555184. See more on PubMed
  • Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981 Sep 18;213(4514):1394-7. doi: 10.1126/science.6267699. PubMed PMID: 6267699. See more on PubMed
Related Products Docs