Select country change
Shopping cart (0 , 0,00 ) Menu Search
Manufactured by BioVendor

Fibroblast Growth Factor 19 Human E. coli

  • Regulatory status:RUO
  • Type:Recombinant protein
  • Source:E. coli
  • Other names:FGF-19, UNQ334/PRO533
  • Species:Human
Please select your region to see available products and prices.
Cat. No. Size Price


RD172107100 0.1 mg
PubMed Product Details
Technical Data

Type

Recombinant protein

Description

Total 206 AA. Mw: 23 kDa (calculated). UniProtKB acc.no. O95750. N-terminal His-tag, 14 extra AA (highlighted).

Amino Acid Sequence

MRGSHHHHHHGMASLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRIRADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEEEIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESDMFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Source

E. coli

Purity

>95%

SDS-PAGE Gel

12% SDS-PAGE separation of Human FGF19
1. M.W. marker – 14, 21, 31, 45, 66, 97 kDa
2. reduced and heated sample, 2.5μg/lane
3. non-reduced and non-heated sample, 2.5μg/lane

Endotoxin

< 1.0 EU/ug

Formulation

Filtered (0.4 μm) and lyophilized in 0.5 mg/mL in 20mM TRIS, 50mM NaCl, pH 7.5

Reconstitution

Add deionized water to prepare a working stock solution of approximately 0.5 mg/mL and let the lyophilized pellet dissolve completely. Filter sterilize your culture media/working solutions containing this non-sterile product before using in cell culture.

Applications

Western blotting, ELISA

Shipping

At ambient temperature. Upon receipt, store the product at the temperature recommended below.

Storage/Expiration

Store the lyophilized protein at –80 °C. Lyophilized protein remains stable until the expiry date when stored at –80 °C. Aliquot reconstituted protein to avoid repeated freezing/thawing cycles and store at –80 °C for long term storage. Reconstituted protein can be stored at 4 °C for a week.

Quality Control Test

BCA to determine quantity of the protein.

SDS PAGE to determine purity of the protein.

LAL to determine quantity of endotoxin.

Summary

Research topic

Energy metabolism and body weight regulation

Summary

The FGFs are a family of more than 20 small (~17–26 kDa) secreted peptides. The initial characterization of these proteins focused on their ability to stimulate fibroblast proliferation. This mitogenic activity was mediated through FGF receptors (FGFRs) 1, 2, or 3. A fourth closely related tyrosine kinase receptor (FGFR4) was able to bind the FGFs but did not lead to a mitogenic response. FGFs modulate cellular activity via at least 5 distinct subfamilies of high-affinity FGF receptors (FGFRs): FGFR-1, –2, –3, and –4, all with intrinsic tyrosine kinase activity and, except for FGFR-4, multiple splice isoforms, and FGFR-5, which lacks an intracellular kinase domain. There is growing evidence that FGFRs can be important for regulation of glucose and lipid homeostasis. The overexpression of a dominant negative form of FGFR-1 in β cells leads to diabetes in mice, which thus implies that proper FGF signaling is required for normal β cell function and glycemia maintenance. FGFR-2 appears to be a key molecule during pancreatic development. Moreover, FGFR-4 has been implicated in cholesterol metabolism and bile acid synthesis. FGF-19, has been shown to cause resistance to diet-induced obesity and insulin desensitization and to improve insulin, glucose, and lipid profiles in diabetic rodents. Since these effects, at least in part, are mediated through the observed changes in metabolic rates, FGF-19 can be considered as a regulator of energy expenditure. FGF-21 is preferentially expressed in liver, but an exact knowledge of FGF-21 bioactivity and its mode of action have been lacking to date. FGF-21 is a potent activator of glucose uptake on adipocytes, protects animals from diet-induced obesity when overexpressed in transgenic mice, and lowers blood glucose and triglyceride levels when therapeutically administered to diabetic rodents.

References to Summary

References to Fibroblast Growth Factor 19

  • Shih DM, Kast-Woelbern HR, Wong J, Xia Y-R, Edwards PA and Lusis AJ: A role for FXR and human FGF-19 in the repression of paraoxonas1 gene expression by bile acids.Journal of Lipid Research 47, 384–392 (2006)
  • Lundasen T, Galman C, Angelin B. and Rudling M: Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man.Journal of Internal Medicine 260, 530–536 (2006)
  • Kurose H, Okamoto M, Shimizu M, Bito T, Marcelle C, Noji S and Ohuchi H: FGF-19-FGFR4 signaling elaborates lends induction with the FGF8-L-Maf cascade in the chick embryo.Develop. Growth Differ. 47, 213–223 (2005)
  • Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Tsai SP, Stewart TA: Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes.Endocrinology 145, 2594–2603 (2004)
  • Strack AM and Myers RW: Modulation of metabolic syndrome by fibroblast growth factor 19 (FGF-19)? Endocrinology 145, 2591–2593 (2004), Review
  • Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B and Jones SA: Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis.Genes and Development 17, 1581–1591 (2003)
  • Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D and Stewart TA: Transgenic mice expressing human fibroblast grwth factor-19 display increased metabolic rate and decreased adiposity.Endocrinology 143, 1741–1747 (2002)
  • Ornitz DM and Itoh N: Fibroblast growth factors.Genome Biology 2(3), 3005.1–3005.12 (2001), Review
Related Products Documents