United States set
language
Menu Shopping cart $0 Search
Distributed product

QuickZyme Mouse MMP-9 Activity Assay Kit 96-Assays

  • Regulatory status:RUO
  • Type:ELISA
  • Other names:Matrix Metalloproteinase-9, MMP9
  • Species:Mouse
Cat. No. Size Price


Discount QZBMMP9M 96 wells (1 kit) $1242,89
PubMed Product Details
Technical Data

Type

ELISA

Description

The QuickZyme mouse MMP-9 activity assay enables you to specifically measure in biological samples both active mouse MMP-9, as well as (pro) MMP-9 which is activated on the plate by APMA. It can be used for the measurement of MMP-9 activity in various biological samples, such as conditioned culture media, tissue homogenates, serum, plasma and urine.

This 96-well plate format assay is based on the QuickZyme technology, using a modified pro-enzyme as a substrate, which upon activation is able to release color from a chromogenic peptide substrate. This multiplication step provides a unique assay sensitivity.

Applications

Serum, Urine, Plasma, Tissue homogenates, Cell culture conditioned medium

Sample Requirements

10 - 100 μl

Shipping

On dry ice. Upon receipt, store the product at the temperature recommended below.

Storage/Expiration

Unopened kit: Store at -20°C, except for the standard, this vial should be stored at -70°C. Do not use kit, or individual kit components past kit expiration date.

Opened kit / reconstituted reagents: Please refer to kit manual.

Calibration Range

0 - 4 ng/ml

Limit of Detection

20 pg/ml (1 hr incubation)

1 pg/ml (6 hr incubation)

Summary

Features

  • Measures endogenous active MMP-9 ( naturally occurring ) or total active MMP-9 ( following activation with APMA ).

  • Samples: cell culture conditioned medium, serum, plasma, urine and tissue homogenates.

  • Quantitative.

  • Range: 4 – 4000 pg/ml.

  • Sensitivity: 20 pg/ml for 1 h incubation with detection reagent; 1 pg/ml for 6 h incubation with detection reagent.

  • Ease-of-use: Equivalent to ELISA.

Research topic

Bone and cartilage metabolism, Cardiovascular disease, Extracellular matrix, Immune Response, Infection and Inflammation, Neural tissue markers, Oncology, Others, Pulmonary diseases

Summary

Matrix metalloproteinases (MMPs) are a group of enzymes engaged in the degradation and remodeling of extracellular matrix (ECM). Nowadays six groups of these enzymes have been distinguished (collagenases, gelatinases, stromelysins, matrilysins, membrane-type, and a sixth group encompassing several other MMPs not classified in the previous categories), differing in structure, cellular localization, and substrate specificity. Since these enzymes are involved in connective tissue remodeling occurring in the course of morphogenetic processes, therefore, they are a subject of a very strict regulation, which is executed, among others, by the expression of their specific inhibitors—tissue inhibitors of metalloproteinases (TIMPs). MMPs 2 and 9 are named type IV collagenases, or alternatively gelatinase A and B, respectively. Their degrading substrates are gelatine, the denatured form of collagen, and type IV collagen, the main component of the basement membrane. One of the members of the MMP family, MMP-9, is a gelatinase that has been implicated in the pathogenesis of atherosclerosis and chronic obstructive pulmonary disease (COPD) in addition to tumor formation and metastasis. Accordingly, a number of studies have associated elevated serum levels of MMP-9 with many chronic inflammatory conditions including coronary artery disease (CAD), COPD ,arthritis and metabolic syndrome. Notably, high levels of MMP-9 have been associated with plaque progression, destability and rupture. These various effects exaggerate the inflammatory process, promoting atherosclerosis and increasing the risk of atherothrombosis and cardiovascular (CV) events. Thus, MMP-9 has emerged as a novel disease marker as well as a therapeutic target. MMP9, like other MMPs, belongs to a superfamily of zinc containing proteases and has been shown to associate with tumorigenesis. Overexpression of tissue MMPs has been correlated with progression in many tumour types, and overexpression of MMP9 has been found in colorectal adenomas and carcinomas. A significant positive correlation has also been found between tissue MMP9 and the stage of colorectal tumours at diagnosis. Elevated expression of MMP-9, along with MMP-2 is usually seen in invasive and highly tumorigenic cancers such as colorectal tumors, gastric carcinoma, pancreatic carcinoma, breast cancer, oral cancer, melanoma, malignant gliomas, chondrosarcoma, gastrointestinal adenocarcinoma. Levels are also increased in malignant astrocytomas, carcinomatous meningitis, and brain metastases. Clinical use and areas of investigation: - Multiple sclerosis - Inflammatory diseases - Cancer

Summary References (23)

References to MMP-9

  • Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003 Jan;28 (1):12-24
  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003 Nov;253 (1-2):269-85
  • Corbel M, Belleguic C, Boichot E, Lagente V. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol. 2002;18 (1):51-61
  • Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?. Circ Res. 2001 Aug 3;89 (3):201-10
  • Fridman R, Toth M, Chvyrkova I, Meroueh SO, Mobashery S. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev. 2003 Jun-Sep;22 (2-3):153-66
  • Gingis-Velitski S, Loven D, Benayoun L, Munster M, Bril R, Voloshin T, Alishekevitz D, Bertolini F, Shaked Y. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res. 2011 Nov 15;71 (22):6986-96
  • Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. Matrix metalloproteinases in human melanoma. J Invest Dermatol. 2000 Sep;115 (3):337-44
  • John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res. 2001;7 (1):14-23
  • Kanayama H. Matrix metalloproteinases and bladder cancer. J Med Invest. 2001 Feb;48 (1-2):31-43
  • Kelly EA, Jarjour NN. Role of matrix metalloproteinases in asthma. Curr Opin Pulm Med. 2003 Jan;9 (1):28-33
  • Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ES. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol. 2004 May;50 (2):87-100
  • Matusiewicz M, ORCID: 0000-0003-4624-0109, Neubauer K, ORCID: 0000-0003-3650-9311, Mierzchala-Pasierb M, ORCID: 0000-0001-9640-4883, Gamian A, Krzystek-Korpacka M. Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases. Dis Markers. 2014;2014:643645
  • Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci. 2003 Jan 1;8:e261-9
  • Niimi T, Keck-Waggoner CL, Popescu NC, Zhou Y, Levitt RC, Kimura S. UGRP1, a uteroglobin/Clara cell secretory protein-related protein, is a novel lung-enriched downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor. Mol Endocrinol. 2001 Nov;15 (11):2021-36
  • Ohbayashi H. Matrix metalloproteinases in lung diseases. Curr Protein Pept Sci. 2002 Aug;3 (4):409-21
  • Opdenakker G, Nelissen I, Van Damme J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol. 2003 Dec;2 (12):747-56
  • Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, Proost P, Van Damme J. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 2001 Jun;69 (6):851-9
  • Opstad TB, Pettersen AA, Arnesen H, Seljeflot I. The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One. 2013;8 (9):e74498
  • Owen JL, Iragavarapu-Charyulu V, Lopez DM. T cell-derived matrix metalloproteinase-9 in breast cancer: friend or foe?. Breast Dis. 2004;20:145-53
  • Sellebjerg F, Sorensen TL. Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull. 2003 Aug 15;61 (3):347-55
  • Shah BH, Catt KJ. Matrix metalloproteinases in reproductive endocrinology. Trends Endocrinol Metab. 2004 Mar;15 (2):47-9
  • Snitker S, Xie K, Ryan KA, Yu D, Shuldiner AR, Mitchell BD, Gong DW. Correlation of circulating MMP-9 with white blood cell count in humans: effect of smoking. PLoS One. 2013;8 (6):e66277
  • Thompson MM, Squire IB. Matrix metalloproteinase-9 expression after myocardial infarction: physiological
Related Products Docs